Question 1: Consider a 2-fold degenerate state with (normalized) eigen functions u_{1} and u_{2}. Consider a perturbation H^{\prime} with
$H_{11}^{\prime}=<1\left|H^{\prime}\right| 1>=0, \quad H_{22}^{\prime}=<2\left|H^{\prime}\right| 2>=0 \quad$ and $\quad H_{12}^{\prime}=H_{21}^{\prime}=\sigma$
Obtain the splitting and corresponding eigen function.
Solution 1: Let $\phi=c_{1} u_{1}+c_{2} u_{2}$
We will have

$$
\begin{aligned}
& c_{1}\left(H_{11}^{\prime}-W^{(1)}\right)+c_{2} H_{12}^{\prime}=0 \\
& c_{1} H_{21}^{\prime}+c_{2}\left(H_{22}^{\prime}-W^{(1)}\right)=0
\end{aligned}
$$

Thus

$$
\begin{aligned}
-c_{1} W^{(1)}+c_{2} \sigma & =0 \\
c_{1} \sigma-c_{2} W^{(1)} & =0
\end{aligned}
$$

The secular equation is

$$
\left|\begin{array}{cc}
-W^{(1)} & \sigma \\
\sigma & -W^{(1)}
\end{array}\right|=0 \Rightarrow W^{(1)^{2}}=\sigma^{2}
$$

$\Rightarrow W^{(1)}= \pm \sigma$ (this is the perturbation)
For $W^{(1)}=+\sigma, c_{1}=c_{2} \Rightarrow \phi=\frac{1}{\sqrt{2}}\left(u_{1}+u_{2}\right)$
For $W^{(1)}=-\sigma, c_{1}=-c_{2} \Rightarrow \phi=\frac{1}{\sqrt{2}}\left(u_{1}-u_{2}\right)$

Question 2: Consider a 3-fold degenerate state with (normalized) eigenfunctions u_{1}, u_{2} and u_{3}. Assume there is a perturbation H^{\prime} and the only non-vanishing matrix elements are $\left(H^{\prime}\right)_{13}=$ $g=\left(H^{\prime}\right)_{31}$. Calculate perturbation to eigenvalues and corresponding eigen functions.
Solution 2: Let $\phi=c_{1} u_{1}+c_{2} u_{2}+c_{3} u_{3}$
We will have

$$
\begin{aligned}
& c_{1}\left(H_{11}^{\prime}-W\right)+c_{2} H_{12}^{\prime}+c_{3} H_{13}^{\prime}=0 \\
& c_{2} H_{21}^{\prime}+c_{2}\left(H_{22}^{\prime}-W\right)+c_{3} H_{23}^{\prime}=0 \\
& c_{1} H_{31}^{\prime}+c_{2} H_{32}^{\prime}+c_{3}\left(H_{33}^{\prime}-W\right)=0
\end{aligned}
$$

Thus

$$
\begin{aligned}
-c_{1} W+c_{3} g & =0 \\
\text { ongc }-c_{2} W & =0 \\
c_{1} g-c_{3} W & =0
\end{aligned}
$$

If $c_{2} \neq 0\left(\right.$ and $\left.c_{1}=0=c_{3}\right)$ then $W=0$ and $\phi=u_{2}$

(The degeneracy is completely lifted).
Question 3: The $n=2$ state of the hydrogen atom is 4 fold degenerate.

$$
\begin{aligned}
& u_{1}=R_{20}(r) Y_{00}(\theta, \phi) ; u_{2}=R_{21}(r) Y_{10}(\theta, \phi) \\
& u_{3}=R_{21}(r) Y_{11}(\theta, \phi) ; u_{4}=R_{21}(r) Y_{1,-1}(\theta, \phi)
\end{aligned}
$$

where $R_{n l}(r) Y_{l m}(\theta, \phi)$ are the normalized hydrogen atom wave functions. The atom is in a static electric field and the perturbation term is

$$
H^{\prime}=q \epsilon z=q \epsilon r \cos \theta \quad(q>0)
$$

q is the magnitude of electron charge and ϵ the strength of electric field which is in the z -direction only. Only non-vanishing matrix elements are:

$$
\begin{aligned}
H_{12}^{\prime} & =H_{21}^{\prime}=-g=-3 q \epsilon a_{0} \\
H_{12}^{\prime} & =\iiint u_{1}^{*} H^{\prime} u_{2} d \tau \text { etc }
\end{aligned}
$$

All other elements like $H_{11}^{\prime}, H_{13}^{\prime}, H_{23}^{\prime}, \ldots$ are zero. Calculate the perturbation and the corresponding wave functions.
Solution 3: Let $\phi=c_{1} u_{1}+c_{2} u_{2}+c_{3} u_{3}+c_{4} u_{4}$
We will have
$-c_{1} W-c_{2} \mathrm{~g}=0$
$-c_{1} \mathrm{~g}-c_{2} W=0$
$c_{3}(-W)=0$
$c_{4}(-W)=0$
Thus the secular determinant is

$$
\left|\begin{array}{cccc}
-W & -\mathrm{g} & 0 & 0 \\
\mathrm{~g} & -W & 0 & 0 \\
0 & 0 & -W & 0 \\
0 & 0 & 0 & -W
\end{array}\right|=0
$$

The roots are $W=+\mathrm{g},-\mathrm{g}, 0,0$
The corresponding wave function are $\frac{1}{\sqrt{2}}\left(u_{1}-u_{2}\right), \frac{1}{\sqrt{2}}\left(u_{1}+u_{2}\right), c_{3} u_{3}+c_{4} u_{4}$

The degeneracy is partially lifted. This is known as linear stank effect.
Question 4: For a hydrogen atom placed in a weak uniform magnetic field (in the z-direction) the perturbation is given by $H^{\prime}=\frac{\mu_{B} B}{\hbar} L_{z}$ where spin is neglected. Use degenerate state perturbation theory to calculate the splitting of the $n=2$ and $n=3$ levels.
Solution 4: The Hydrogen atom eigenfunctions are

$$
\psi_{n l m}(r, \theta, \phi)=R_{n l}(r) Y_{l m}(\theta, \phi)
$$

For $n=2$ we have 4 wave functions

$$
u_{1}=R_{20} Y_{00} ; u_{2}=R_{21} Y_{00} u_{3}=R_{21} Y_{1,1} ; u_{4}=R_{21} Y_{1,-1}
$$

Now $\psi_{n l m}$ are eigen functions of L_{z}.

$$
L_{z} \psi_{n l m}=m \hbar \psi_{n l m}
$$

Thus, we have a representation in which H^{\prime} is diagonal and the diagonal elements are:

$$
H_{11}^{\prime}=0, \quad H_{22}^{\prime}=0, H_{33}^{\prime}=+\mu_{B} B \text { and } H_{44}^{\prime}=-\mu_{B} B
$$

Thus the degeneracy is partially lifted

For $n=3$, we will have wave functions:

$$
\left.\begin{array}{rl}
u_{1} & =R_{32} Y_{22} \\
u_{2} & =R_{32} Y_{21} \\
u_{3} & =R_{32} Y_{20} \\
u_{4} & =R_{32} Y_{2,-1} \\
u_{5} & =R_{32} Y_{2,-2}
\end{array}\right\} \quad l=2
$$

Question 5: If we take into account the perturbation term is given by: $H^{\prime}=\frac{\mu_{B} B}{\hbar}\left(L_{z}+2 S_{z}\right)$.
Calculate the perturbation to the state $\phi\left(n=2, l=1, j=\frac{3}{2}, m_{j}=\frac{1}{2}\right)=\left(\begin{array}{ll}\sqrt{\frac{2}{3}} & R_{21} Y_{10} \\ \sqrt{\frac{1}{3}} & R_{21} Y_{11}\end{array}\right)$
Solution 5: The pauli Operator is given by
$\frac{\mu_{B} B}{\hbar}\left(L_{z}+2 S_{z}\right)=\frac{\mu_{B} B}{\hbar}\left(\begin{array}{cc}L_{z}+\hbar & 0 \\ 0 & L_{z}-\hbar\end{array}\right)$
Thus

$$
\begin{aligned}
\Delta W & =\frac{\mu_{B} B}{\hbar}\left(\sqrt{\frac{2}{3}} R_{21} Y_{10} \sqrt{\frac{1}{3}} R_{21} Y_{11}\right)\left(\begin{array}{cc}
L_{z}+\hbar & 0 \\
0 & L_{z}-\hbar
\end{array}\right)\binom{\sqrt{\frac{2}{3}} R_{21} Y_{10}}{\sqrt{\frac{1}{3}} R_{21} Y_{11}} \\
& =\frac{\mu_{B} B}{\hbar}\left(\sqrt{\frac{2}{3}} R_{21} Y_{10} \sqrt{\frac{1}{3}} R_{21} Y_{11}\binom{\hbar \sqrt{\frac{2}{3}} R_{21} Y_{10}}{0}\right. \\
& =\frac{2}{3} \mu_{B} B
\end{aligned}
$$

where the integration over entire space is assumed.

